
www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 �5

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

abStraCt

Service Oriented Architectures (SOA) are becoming the prevalent approach for realizing modern services
and systems. SOA offers superior support for autonomy (decoupling) and heterogeneity compared to pre-
vious generation middleware systems, resulting in more scalable and adaptive solutions. However, SOA
have	not	adequately	addressed	management,	while	traditional	management	solutions	do	not	sufficiently	
scale to address the needs of (global) Web services. We propose scalable management based on models
and industry standards. We discuss a use case for global service management and present its design,
implementation,	and	preliminary	evaluation.	We	retain	all	the	benefits	of	SOA	while	also	enabling	global	
scale manageability. Our approach provides manageability that is comprehensible for administrators yet
automated enough for integration into autonomous systems.

Keywords: adaptation; PlanetLab; scale; standards; Web services management

IntroduCtIon
The increasing scale and complexity of systems
and services makes them increasingly difficult
and expensive to administer. Service Oriented
Architectures (SOA) (Huhns & Singh, 2005)
contributed to overcome these problems, but
they do not sufficiently address the manage-
ment of services.

Updating a moderately sized data center
may require changes to software on thousands

of machines. In the case of global services in a
large enterprise, a software update may require
touching hundreds of data centers. In addition,
the complexity of these services increases as
there may be interdependencies among the ser-
vices. For example, a Web-based e-commerce
application may consist of a virtual store, cata-
log, customer relationship, and billing services,
among many others. At the infrastructure level,
this application is usually mapped on a three-tier

dealing with Scale and
adaptation of global Web

Services Management
William Vambenepe, HP, USA

Carol Thompson, HP, USA
Vanish Talwar, HP, USA
Sandro Rafaeli, HP, USA
Bryan Murray, HP, USA
Dejan Milojicic, HP, USA

Subu Iyer, HP, USA
Keith I. Farkas, VMware, USA

Martin Arlitt, HP, USA

IGI PUBLISHING

This paper appears in the publication, International Journal of Web Services Research Volume 4, Issue 3
edited by Liang-Jie Zhang © 2007, IGI Global

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-pub.com

ITJ3833

www.manaraa.com

�� International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

system architecture, comprising the database,
application, and Web server tiers. The applica-
tion tier further consists of the application server,
the application in question, and other services
on which the application depends. Large scale
data centers in financial, public and private sec-
tor, etc. can be significantly larger in size with
significantly more complex services.

In addition, traditional enterprise data
centers are being complemented with so called
closet computers emerging from remote and
home offices. New computing models, such
as Utility Computing (Wilkes, Mogul, &
Suermondt, 2004) (Kandlur & Killela, 2004),
Grid Computing (Foster, Kesselman, Nick,
& Tuecke, 2002), and PlanetLab (Peterson,
Anderson, Culler, & Roscoe, 2002) grow even
more significantly in scale.

Availability needs change as companies
move from expensive, private networks with
well-defined management policies to the
Internet and poorly defined policies and best
practices. Such shifts require adaptation to
unexpected loads, rebooting and upgrading
of machines, networks, and services. As the
systems continue to grow in size and global
deployment, the traditional management ap-
proaches become less effective. To address
these new requirements, we propose a new way
of scalable management, based on the use of
models and standards- based interfaces. The
work presented in this article is related to our
work on approaches to service deployment and
on scalable communication described elsewhere
(Adams et al., 2005; Talwar et al., 2005).

The rest of the article is organized in the
following manner. First, we overview related
standards in the management area. We then
present a use case scenario. Subsequently, we
describe our solution and discuss model federa-
tion. We then evaluate our solution followed
by lessons learned and related work. Finally,
we summarize our contributions and discuss
future work.

InduStry StandardS
baCkground
Our work relies on the use of industry standards
in order to ensure that there is interoperability
between long-lived global services as well as
infrastructures they execute on. In this section
we provide a summary of standards in the area of
models, management, deployment workflows,
and security.

Web based enterprise management
(WBEM) is a set of management standards for
distributed computing environments, developed
by the Distributed Management Task Force,
Inc. (DMTF; www.dmtf.org/standards/wbem).
WBEM has been designed to simplify system
management across multiple computing envi-
ronments. The core set of WBEM standards
includes the common information model
(CIM) standard, a data model for represent-
ing common management information for
systems, networks, applications, services, and
the dependences between these components
(www.dmtf.org/standards/cim). CIM specifies
a schema, which provides the definitions of the
model, and a metaschema, which facilitates
integrating CIM with other models.

The Web services distributed management
(WSDM) technical committee in OASIS pro-
duced the Management Using Web Services
(MUWS) specification to describe a standard
way to advertise, expose and access manage-
ability capabilities through Web services (www.
oasis-open.org/committees/wsdm/charter.php).
The specification defines notions such as man-
ageable resources, manageability endpoints,
and manageability capabilities. It provides a
common way to handle manageability endpoints
and assess their identity. Management models
such as CIM can make use of WSDM MUWS
to make their semantics available through the
standard mechanism for exposing management
information through Web services.

The GGF’s Configuration Description,
Deployment, and Lifecycle Management
Working Group (CDDLM-WG), pursues Web
service deployment in the Grid space (https://
forge.gridforum.org/ projects/cddlm-wg) . The
CDDLM deployment is an extension of the

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 �7

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

OASIS WSDM. CDDLM defines a language
for specifying deployment requests, the com-
ponent model that enables services to become
deployable, and a set of Web services interfaces
(in WSDL) for invoking deployment. CDDLM
reference implementations are in progress and
we plan to use then once they become more
reliable.

The business process execution language
(BPEL) is a standard published by OASIS
(www.oasis-open.org/committees/wsbpel/char-
ter.php). BPEL for Web services is an XML-
based language designed to enable task-sharing
for distributed computing. BPEL orchestrates
Web Services by specifying the order in which it
is meaningful to invoke a collection of services.
A Business Process in BPEL is composed of
several Web Service invocations, Receptions,
and Decision Points with simple conditional
logic and parallel flows or sequences.

OASIS Web services security (WSS) TC
produced the Web services security (WS-Se-
curity) set of specification to enable standard
use of existing security technologies such as
X.509 certificates, Kerberos tickets and SAML
Assertions to enhance SOAP messages (www.
oasis-open.org/committees/ tc_home.php?wg_
abbrev=wss). WS-Trust (Web services trust
language) extends WS-Security for issuing
security tokens and credentials in different
trust domains.

uSe CaSe: global
ServICeS ManageMent
In this section, we consider a scenario involving
the deployment of a global scale, three-tier e-
commerce application. The scenario consists of
deploying the application onto a large number
of nodes. Some nodes support the database,
while others support the Web and e-commerce
application. The Web application is configured
to connect to the correct database node. It is
possible, in case of failures, to reconfigure the
Web application to migrate to a different data-
base server. A few nodes have other services
running, and these services use the default ports
of the Web server and database server, which
means that the deployed application has to be

configured to run on a different port. The data-
base and Web applications are customized for
geographic location. For example, the applica-
tion running on a node in Brazil is presented in
Portuguese and should offer products that are
relevant to Brazilian people. Configuring the
correct language requires detecting the language
to use and then activating the proper Web ap-
plication files as well as filling the database
with the correct product catalogue.

Furthermore, the nodes assigned for a
globally distributed application would typi-
cally span several distinct trust realms. This
means that the nodes on which the application
is being deployed may not be able to directly
identify, authenticate or authorize the deploy-
ment engines because of the differing security
mechanism among them. In this scenario, there
is also the possibility of failures. These faults
can happen to one or more Web application,
database or Web servers. There is some way to
monitor the deployed applications in order to
detect these failures and then take some action
to solve the problem. This scenario requires
the following:

1. Web-services-based scalable deployment:
for decoupled and scalable communica-
tion.

2. Model-based configuration and adaptation:
for machine-readable system configura-
tion.

3. Event-based notification: for scalable
failure notification (pursued elsewhere by
Brett et al., 2004).

4. Security framework for providing authen-
tication, authorization, integrity checking
and confidentiality. The security frame-
work is required to provide cross-domain
authentication and authorization.

In our work, the core service model is the
same in all deployments, and the localization
is modeled as an extension to the core model.
This allows us to configure, deploy and manage
the services in a coherent manner, maintaining
a consistent view of the deployments, regard-
less of customization. Furthermore, using the

www.manaraa.com

�8 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

standard manageability interfaces enables the
components to configure each other on an as
needed basis.

our SolutIon
In this section, we present our solution to ad-
dress the problems identified above. The system
model we consider consists of a set of globally
distributed nodes such as those on PlanetLab1.
The nodes are subject to changes such as failures,
upgrades throughout their lifecycle and host
services catering to different geographies. Such
a computing environment has characteristics of
scale, virtualization, and dynamism.

The solution principal entities consist of
deployment, health monitoring, and adaptation
services (see Figure 1). In addition, we design
a security framework for these services. Our
overall approach is to design these services
using Web services and models. The solution is
based on using the industry standards introduced
earlier in the article and subject them to very
large scale and dynamism.

The overall execution flow in the system
goes through four main phases. In the first phase,
users or customers request for their services
to be globally installed and instantiated. Dur-
ing this phase, the deployment service uses a

well-defined description of the desired service
specified in formal languages and orchestrates
a workflow to install, configure, and activate
the service. Once the service is activated, in
the subsequent phase, the health monitoring
service logs the service activity into event
structures. This log information is then provided
to a publish-subscribe eventing system such as
that described in Brett et al. (2004). Next, the
semantic relationships among the various events
are formally represented in well-defined model
structures. In the final phase, an adaptation
service acts on the information in the model,
and in case of policy violations, the adaptation
service executes re-configuration decisions.
This may require reinvoking the deployment
service, if needed.

In the following subsections, we describe
each of the solution entities in detail. We
specifically consider instances of JPetStore
as the service to be deployed globally and use
it as the running example in the subsequent
subsections.

deployment Service
Our deployment service is responsible for per-
forming the installation, configuration, activa-
tion, deactivation, and deinstallation of global

Figure 1. Solution components

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

application services. It is primarily comprised
of an infrastructure component consisting of
Web services-based deployment and work-
flow engines; a service description component
consisting of language parsers and interpreters;
and an eventing component consisting of event
triggers and event visualization tools.

An instance of a JPetStore testbed consists
of a Tomcat server, a MySQL server, and JPet-
Store application files. A typical deployment
process involves the download of each of these
packages, the installation to appropriate folders,
their configuration, and then subsequent activa-
tion. We wrote generic Java components that
capture the logic for performing these actions.
In order to customize the JPetStore instance
based on geography, we capture the attributes
for each geography in CIM models. At the time
of deployment, this information is obtained
from the CIM repository and mapped into the
deployment configuration input file.

The Java component is designed so that it
can read many of the parameters specific to an
application through a configuration file. The
generic Java components we wrote include
GenericRPMInstaller, GenericTarInstaller,
GenericActivator, GenericRSyncDownloader,
and GenericFailureDetector. These components
are then distributed as a library along with the

deployment engine infrastructure package (see
Figure 2 for the example code snippet).

The web services based deployment engine
exists on all of the deployment target nodes. It
receives and processes the deployment requests
given to a deployment target node. Based on a
deployment request, it locates the appropriate
Java component responsible for a request, and
then invokes the appropriate methods on that
component.

At the time of deployment, we describe the
specific configuration information needed dur-
ing the JPetStore deployment in a well-defined
deployment language. These parameters are, for
example, the name of the deployment server, the
package names, the destination directories, the
download byte size, and so forth. The language
parsers and interpreters execute at the deploy-
ment target nodes. They are invoked during the
execution of the appropriate Java components
at the target node.

We also describe the deployment dependen-
cies that exist among the various components
of the JPetStore package as a workflow. Figure
3 shows the conceptual workflow needed for
an instance of a JPetStore.

This is formally represented in a workflow
language, wherein we describe the destination
host, the functionality to be performed, and the

Figure 2. Snippet of deployment component

public class GenericRPMInstaller
{
 public boolean install(String parameters) {
 // download the packages
 RsyncDownloader downloader = new
 RsyncDownloader(downloadFromDir,downloadToLocation,
 new Integer(downloadBlockSize).intValue());
 downloader.download();
 // install the package
 String installCmd = rpmCmd+downloadToLocation+”/”+rpm;
 File file = new File(downloadToLocation);
 p = Runtime.getRuntime ().exec (installCmd,null,file);
 }
}

www.manaraa.com

70 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

configuration language specification for the
deployment step. In this workflow, we map the
dependency requirements that the application
service provider has specified to the actual in-
stances of the packages and services within the
system. (See Figure 4 for the example code.)

The BPEL workflow specifies a composi-
tion of tasks to be performed by the management
components and it is provided to the BPEL
workflow engine. The workflow engine executes
at the deployment server node. It parses and
processes the deployment workflow descrip-
tions. It then invokes the deployment engines
on the target nodes using SOAP. The deploy-
ment engine when thus invoked processes the
deployment requests as described earlier.

Various event triggers are started during
the deployment process. The event triggers
are written to send notifications about START,
FAILURE, and HEARTBEAT for the deployed
process. These events are then visualized
through visualization tools.

health Monitoring Service
The Health Monitoring Service is responsible
for monitoring the execution of application
processes started on the target machine. The
deployment engine tells the health monitoring
service the name of process to be monitored and
whatever happens to that process is reported to
the adaptation service (see Figure 5).

The health monitoring service is formed
by three WSDM-compliant Web services. The
DetectFailure Web service is just a place holder
for resource properties, namely WATCH and
NOTIFY. From time to time, these resource
properties are updated, and DetectFailure sends
notification events to the subscribers of those
resource properties.

The WatchService Web service subscribes
to the WATCH resource property of Detect-
Failure. When a notification is received, the
WatchService starts a failure detection service
for monitoring an application process. The
NotifyService Web service subscribes to the

Install MySQL
on machine
planetlabl.foo.bar Install Tomcat

on machine
planetlab2.abc.xyz

Configure Tomcat

Activate Tomcat on
planetlab2.abc.xyz

Configure MySQL
Server

Activate MySQL
on machine
planetlabl.foo.bar

Populate Database
with JPetstore data

Install JPetStore
Application

Install MySQL
JDBC Driver

Figure	3.	Workflow	for	the	deployment	of	JPetStore

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 71

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

NOTIFY resource property of DetectFailure.
Whatever is written to NOTIFY is then provided
to NotifyService that on its turn translates the
WSDM event into an external event and it is
sent to adaptation service.

The Health Monitoring Service is trig-
gered by the deployment engine (see Figure
5). Once the deployment engine has started
the deployment of an application, it calls the
SetResourceProperty operation (WS-Resour-

ceProperties) on DetectFailure and sets a new
value to the NOTIFY resource property.

At this moment, NOTIFY is set to a
STARTUP event. The NotifyService is then
notified of this event and translates it from
WSDM to an external event and sends it to
adaptation service. Once the deployment engine
has finished deploying (started) that applica-
tion, it calls the SetResourceProperty operation
on DetectFailure and sets a new value to the

<sequence name=”“main””>
<receive name=”“receiveInput”” partnerLink=”“client”” portType=”“tns:
PLDBInstallation-Sequence”” operation=”“process”” variable=”“input””
createInstance=”“yes””/>
.....
<invoke name=”“invoke-1”” partnerLink=”“deploymentengine-node-24””
operation=”“invokeEngine”” portType=”“nsx24:DeploymentEngine””
inputVariable=”“net-xmpp_input””/>
.....
<invoke name=”“invoke-2”” partnerLink=”“deploymentengine-node-15””
portType=”“nsx15:DeploymentEngine”” operation=”“invokeEngine””
inputVariable=”“net-psepr_input””/>
......
</sequence>

Figure	4.		Snippet	of	deployment	workflow	specification

Deployment
Engine

DetectFailure

WatchService

NotifyService

Failure
Detection
ServiceWATCH

NOTIFY

subscribe (1)

subscribe (1)

notify (6)

notify (3)

SetResourceProperties (2)

SetResourceProperties (8)

starts (7)

external event (10)

external event (4)

SetResourceProperties (5)

notify (9)

Adaptation
Service

Deployment
Engine

DetectFailure

WatchService

NotifyService

Failure
Detection
ServiceWATCH

NOTIFY

subscribe (1)

subscribe (1)

notify (6)

notify (3)

SetResourceProperties (2)

SetResourceProperties (8)

starts (7)

external event (10)

external event (4)

SetResourceProperties (5)

notify (9)

Adaptation
Service

Figure 5. Health Monitoring Service

www.manaraa.com

72 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

WATCH resource property. The WatchService
is then notified of the new WATCH value and
based on its content the WatchService starts a
failure detection service.

On its turn, the failure detection service
keeps watching the application process and
generates events of the current state of that
process. It calls the SetResourceProperty opera-
tion on DetectFailure and sets a new value to
the NOTIFY resource property. This event is
received by NotifyService and passed on to the
adaptation service. There are two types of events
generated by failure detection service. The first
one is HEARTBEAT, which tells adaptation
service that the designated application is up
and running. The second event is FAILURE.
This event tells the adaptation service that the
process is no longer running on the target ma-
chine. After generating a FAILURE event, the
failure detection service stops running.

Model-based adaptation Service
The implementation of the adaptation service is
comprised of CIM repositories; a discovery and
eventing mechanism that populates and updates
the models throughout the service lifecycle; and
scalable decision making services that act upon
the information in the models for adaptation.

The motivation for using models is the need
to capture in a structured manner the applica-
tion details, the dependencies among various
application components, and their relationship
with the underlying hardware. For example,
in a standard three-tier application, several
application servers could talk to one database
server. So, if the database goes down, all of the
application servers connecting to this database
server would also fail. We look at CIM models
as a way of capturing the complex relationships
between different application components.

We are using the WBEM implementation
for CIM repositories. We create a model of
JPetStore instances. Several instances of the
JPetstore testbed exist and their attributes are
each customized based on geography and in-
ternationalization. An eventing mechanism is
used to receive change events from the Health
Monitoring Service. This communication be-

tween the Adaptation Service and the Health
Monitoring Service happens through an external
publish/subscribe event system. What happens
is that instead of subscribing to DetectFailure’s
NOTIFY resource property, the adaptation ser-
vice subscribes to a single given topic on this
event system. Whatever information is written
to NOTIFY is translated from a WSDM event
to this event system format. The design option
of using an external publish/subscribe system
instead of directly using WSDM’s WS-Notifi-
cation mechanism is driven by the scalability
required by highly distributed systems.

Using WS-Notification, the adaptation
service would have to subscribe to all NOTIFY
resource properties on every target machine
being deployed. This clearly does not scale to
a large number of target machines (or nodes).
However, by allowing the adaptation service
subscribe to only a single topic, the burden of
managing all events generated is passed to the
publish/subscribe system infrastructure being
used. It is assumed that such system can handle
the expected number of events generated by
the health monitoring service. However, using
external publish/subscribe system instead of
using WS-Notification would result in network
and security issues. We leverage the work on
eventing systems being done by Brett et al.
(2004) to address these issues.

On receiving these change events, the
model is updated to reflect the changes. The
information is then acted upon by decision
making engines. In our implementation, we
perform a redeployment in case of failures. Such
a redeployment action takes into consideration
the dependencies that exist among various ap-
plication components. In many cases, the deci-
sion making engine needs knowledge about the
current state across multiple distributed nodes.
We also leverage the geography information
captured in the CIM models to customize the
redeployment based on the location of the
targeted Web service.

The whole process is prone to failures
during deployment time, which means that
our adaptation service could never receive any
FAILURE events because the Health Monitor-

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 73

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ing Service had not been launched for the given
deploying component. For these cases, we
start a timeout for every node being deployed.
When the timeout expires and no FAILURE or
HEARTBEAT events have been received, the
adaptation service assumes the node has failed
completely and it starts a process of redeploying
the component on another node.

In our prototype, we show the adaptation
service reacting to failures of MySQL servers.
The failure events are propagated through the
eventing infrastructure, in response the adapta-
tion service triggers a redeployment action, and
eventually the MySQL servers are restarted.

Security framework
Based on the requirements defined previously,
we first identify the threat model we are con-
sidering for our system:

• Data integrity: The data sent from deploy-
ment coordinator to deployment engines
(or target machines) can be easily modi-
fied. Furthermore, defects sent by target
machines to the deployment coordinator
can be modified and false problems can
be injected.

• Impersonation: Given the automation
level we expect to achieve with our system,
where adaptation engines are monitoring
and dispatching adaptation scripts, the
system is vulnerable to identity misuse.
An intruder with malicious intentions can
pose as a valid adapter and trigger hindering
actions on any target machine.

• Unauthorized access: Certain actions
require different levels of authorization.

• Collection of sensitive data: Nodes placed
in the route between deployment entities
have access to all data trafficking. The data
is highly sensitive to external analysis.
Computer hackers can analyze monitoring
data and use this information to break into
systems.

The basic security functions required to
protect against the threats raised above are in-
tegrity checking, authentication, authorization
and confidentiality:

• Integrity checking: Data integrity must
be guaranteed. Any accidental corruption
or intentional manipulation of the data
must be detected to avoid exposure to false
alarms.

Coordinator

User Model

{{notify}sign_a}x

Target
Machine

Target
Machine

{A}x: A encrypted by key x.
{A}sign_x: A signed with X s private key.

Sub-coordinator

Sub-coordinator

register

register

register

register

Figure 6. Security architecture

www.manaraa.com

74 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

• Authentication: The identity of any entity
performing any type of interaction in the
system must be properly authenticated.
External entities must be prevented from
interacting with valid entities. Valid enti-
ties must be treated as such. A valid entity
must not be barred when trying to perform
a valid operation.

• Authorization: Valid members must carry
security tokens that state unambiguously
the operations they are authorized to per-
form.

• Confidentiality: Only properly authorized
entities must have access to data flowing
between two entities.

Our security model has a coordinator and
several target machines. The target machines
register with the coordinator and receive a key
also known as group key (Rafaeli & Hutchison,
2003). The group key is used to encrypt all
communication among target machines and

coordinator (see Figure 6). We use a public key
infrastructure to enable authentication. Every
domain has a root certification authority that
issues certificates for all entities in the domain.
We refer to such domain as a trust domain.

 The desired security properties to be used
for each WS call (operation) are defined in a
configuration file. Figure 7 shows an example of
this file. The Register operation is to be signed
and encrypted using asymmetric key encryp-
tion (public key of destination), and Notify is
to be signed and encrypted using symmetric
key encryption (group key). These security
policies are applied on the SOAP messages
using WS-Security.

Our framework provides role-based au-
thorization. The certificate issued to a given
entity in a domain carries a CertificatePolicies
extension (Housley, Ford, Polk, & Soho, 1999)
that designates the role of the certificate’s
subject for that domain. The roles are hierar-
chically organized in levels, where each level

<security-policy xmlns=”“http://wss.dsmt.org/xml/ns/wss/config””>
 <port ns=”“http://glue.dsmt.org/monitor””>
 <operation name=”“Register””>
 <policy>
 <sign/>
 <asymmetric-encryption/>
 </policy>
 </operation>
 <operation name=”“Notify””>
 <policy>
 <sign/>
 <symmetric-encryption/>
 </policy>
 </operation>
 </port>
 <port ns=”“http://glue.dsmt.org/federate””>
 <operation name=”“Validate””>
 <policy>
 <sign/>
 </policy>
 </operation>
 </port>
</security-policy>

Figure	7.	An	example	security	policy	file

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 75

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

has its own set of privileges, and higher levels
encompass the privileges of the lower levels.
We currently have three roles: target, server
and CA roles (respectively the lowest to the
highest). Target machines are assigned to role
target. The coordinator and sub coordinators
are assigned to role server and the certification
authority service is assigned to role CA.

Each operation in our system (registration,
notification and federation is configured with
a given level (role) and only entities assigned
to the given (or higher) level are authorized
to perform that operation. See Figure 8 for an
example.

In order to improve the scalability of our
system we use a hierarchy of subcoordinators.

Target machines register with subcoordinators
and not directly with the coordinator. When the
group key is updated, the coordinator sends
it to subcoordinators that forward it to target
machines. Note that there can be a chain of
subcoordinators between a target machine and
the coordinator.

Federation
As we have seen previously, target machines
might be placed in a trust domain different from
the coordinator’s trust domain. Figure 9 illus-
trates an example: Entity A is in trust domain
1 and entity B is in trust domain 2. Since each
entity has its certificate issued by its own trust

<authorization-policy xmlns=
““http://glue.dsmt.org/xml/ns/authorization””>
 <port ns=”“http://glue.dsmt.org/monitor””>
 <operation name=”“Register”” level=”“0””/>
 <operation name=”“Notify”” level=”“1””/>
 </port>
 <port ns=”“http://glue.dsmt.org/federate””>
 <operation name=”“ValidateResponse”” level=”“2””/>
 </port>
</authorization-policy>

Figure	8.	An	example	authorization	file

CA1
Service

Entity
A

Trust Domain 1 Trust Domain 2

Entity
B

CA2
Service

Subject: A
CertificatePolicies: A

Issueer: CA1

Certificate A Certificate B

Certificate B

TRUST

Subject: CA2
PolicyMappings: A:B

Issueer: CA1

Certificate CA1-CA2

CA2? Certificate CA1-CA2

Subject: B
CertificatePolicies: B

Issueer: CA2

Figure	9.	Cross-certification

www.manaraa.com

7� International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

domain’s certification authority, they cannot
authenticate each other directly.

In our framework, we assume the existence
of a trust relationship between the certifica-
tion authorities of trust domains 1 and 2. This
relationship is expressed in the form of cross-
certification. CA1 issues a certificate for CA2
and CA2 issues a certificate for CA1. The
certificates have a PolicyMappings extension
[2] that maps the policy models between the
two domains.

When entity A receives Certificate B, issued
by CA2, which at first is not recognized by entity
A, it asks CA1 to identify CA2. CA1 has issued a
cross-certificate to CA2 (Certificate CA1-CA2),
and then this certificate is returned to entity A.
Entity A can now authenticate Certificate B and
then map between Policy A and Policy B and
verify if entity B has the correct privileges to
execute the operation being requested.

Model federatIon
In this section, we address the scenarios of
federation wherein multiple distributed model
repositories exist and aggregation of data and
actions from these different repositories is
needed. In many cases this is done manually,
through the use of complementary IT man-
agement tools, or through ad hoc integration
which results in high costs. We present model
federation to address these issues for large scale
systems. A consistent framework for model
federation is the equivalent of switching from
paper maps to electronic maps. It provides
a searchable, metadata-rich environment in
which information can be accessed based on
the boundaries of the IT system of interest to
the invoker, not the layout and distribution of
relevant information.

Federated repositories go beyond expos-
ing manageability of individual resources and
instead provide access to an entire system of
related resources. Resources can be grouped
in a system based on commonality of loca-
tion, ownership, purpose or any other reason.
The model access framework ensures that this
grouping can be realized independently of
location and implementation of manageability

for the participating resources, by using Web
services standards for integration. The key
concepts are:

• Model element: an XML fragment that
represents a characteristic of a resource. It
corresponds to a CIM property, a WSDM
MUWS property or an element in a WS-
Management state document.

• Resource: A real-life (physical or logical)
entity. It corresponds to a CIM instance, a
WSDM MUWS manageable resource or
a WS-Management resource instance.

• System model: An XML description of a
specific system, through description of its
composing resources and their relation-
ships. In current standards, a system model
corresponds to an XML serialization of
a portion of the content of a CIMOM, a
WS-ServiceGroup containing MUWS
resources or a WS-Management catalog.
In the general case, a system is composed
of several resources. The case where a
system corresponds to just one resource is
logically a special case, albeit an arguably
common one.

Model-driven management requires access
to models. The Web services framework for ac-
cessing system models assumes that the models
are represented in XML: a system model is an
XML document.

In general, the Web services framework de-
scribed here does not specify how the document
that represents the system is created, structured
or populated. It only requires that this document
be represented as an XML document. Model-
ing standards and techniques describe how
the XML document is created. For example,
the CIM model describes the semantic of the
model elements if the resources are described
using CIM. It also describes how to represent
relationship among resources (through CIM as-
sociations). A CIM to XML mapping describes
how to turn this CIM description of the system
into an XML document.

In the case where there is no existing
resource model for the resource or the model-

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 77

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ing framework used for the resource does not
provide all the directions to create the XML
representation of the system, some specifica-
tions provide generic (non resource specific)
elements.

WSDM MUWS Part 2 and WS-Re-
sourceLifetime define a set of standard model
elements, such as elements to represent relation-
ships among resources, a caption, the version, a
human-readable description of the resource, the
operational status of the resource, etc. Similarly,
WS-ManagementCatalog defines such model
elements as a display name, the name of the
vendor for the resource. and so forth.

In some cases, there is a resource model for
the resources but the resource model only pro-
vides ways to represent individual resources, not
to generate an XML document that represents
the entire system. For example, the CIM model
provides classes for many types of resources but
assumes that the system model will be accessed
object by object, using the interfaces defined
by the WBEM framework. It does not, at least
at this point, provide a way to generate one
XML document that represents the content of
a CIMOM (or a portion of it larger than just
one instance).

For such cases where the resource model
does not provide a way to aggregate resources
to provide a representation of the system, WS-
ServiceGroup provides one way to create that
logical XML document. In this case the system
model is the resource properties document of a
service group that contains a set of resources.
The relationships among these resources are
represented by model elements in the represen-
tation of the resources. For example, through
model elements defined by the resource model
(e.g., CIM associations) or through MUWS
relationships elements.

While, as illustrated above, some of the
standards and specifications intended for Web
services -based management can offer help in
creating the system model document, the major
value provided by the Web services stack is
in accessing the resource model. This is done
through a set of specifications defining aspects
of the SOAP messages used to interact with the

system model. Looking at it through this per-
spective reveals how similar WS-ResourcePro-
perties and WS-Transfer/WS-Enumeration are.
Both specifications define SOAP messages to
retrieve the entire system model. In addition,
they provide ways to retrieve portions of the
document through an XPath-based mechanism
(for WS- Transfer this is done through an ex-
tension currently defined in WS-Management).
WS-ResourceProperties also provides special
operations for the common special case of
retrieving children of the top level element of
the XML representation of the system.

While the nonnormative text of these
specifications seems to imply that the messages
are used to retrieve the description of a unique
“resource”, the term “resource” in that context
can be applied to anything that is described
by an XML document. A system model can
therefore be such a “resource”, it is not limited
to resources as real-life entities.

One of the key principles of the Web ser-
vices architecture is to minimize the coupling
between participants. Tight coupling creates
possible breakage points. In addition to abstract-
ing out programming languages and operating
systems, contracts of services should also be
designed to minimize assumptions between
participants. One element of this is the use of
WS-addressing endpoint references (EPRs).
An EPR contains all the information needed to
address a given endpoint. The way to process an
EPR to extract and make use of this information
is described by the WS-Addressing specifica-
tion; it does not require any knowledge of the
specificities of the endpoint. Thus a service
consumer can be written to make no assump-
tion about the way to address a resource as the
service consumer only assumes that it will be
handled an EPR that contains the information.
Should the way the service is addressed change,
the service consumer will not need to change its
implementation, it will just need to be provided
with an up to date EPR for the service. Thus
another potential breakage point is removed:
the service consumer only needs to understand
the semantics of the messages exchanged, not
the semantics of the headers used for address-

www.manaraa.com

78 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ing. On the other hand, it requires EPRs to be
discovered from an authoritative source.

In the case of management interactions
for retrieving elements of a system model,
understanding the semantics of the messages
exchanged translates to understanding the model
of the system. In addition, in many cases the
addressing of the resources is based on elements
of the model.

Figure 10 shows an example of a mes-
sage that could be used to retrieve the state
of an instance of the JPetStore application

(specific syntax of the body would vary
depending on whether WS-Transfer or WS-
ResourceProperties is used). A likely reply is
presented in Figure 11.

The mymodel:StoreURI element that is
used for addressing it part of the model of the
pet store, which the invoker is expected to
understand (assuming the invoker is the same
as the recipient of the response).

In this scenario, making the invoker aware
of the addressing mechanism does not add
much coupling because the invoker is already

<soap:Envelope>
 <soap:Header>
 <wsa:MessageId>http://foo.com/m1</wsa:MessageId>
 <wsa:To>http://hp.com/JPetStoreManager</wsa:To>
 <wsa:Action>
 http://schemas.xmlsoap.org/ws/2004/0�/transfer/Get
 </wsa:Action>
 <mymodel:StoreURI>http://www.PetsRUs.com/PetStore/index.jsp
</ mymodel:StoreURI>
 </soap:Header>
<soap:Body/>

Figure 10. Request message to retrieve the state

<soap:Envelope>
 <soap:Header>
 <wsa:MessageId>http://hp.com/m1</wsa:MessageId>
 <wsa:RelatesTo>http://foo.com/m1</wsa:RelatesTo>
 <wsa:To>http://foo.com/Service1</wsa:To>
 <wsa:Action>
 http://schemas.xmlsoap.org/ws/2004/0�/transfer/GetResponse
 </wsa:Action>
 </soap:Header>
<soap:Body>
 <mymodel:PetStore>
 <mymodel:StoreURI>http://www.PetsRUs.com/PetStore/index.jsp</ mymodel:StoreURI>
 <mymodel:StoreOwner>Joe Pet</mymodel:StoreOwner>
 <mymodel:HasSecuredPaymentService>true</ mymodel:HasSecuredPaymentService>
 <mymodel:Payment Accepted>
 <mymodel:PaymentType>Credit</mymodel:PaymentType>
 <mymodel:PaymentType>Debit</mymodel:PaymentType>
 </mymodel:Payment Accepted>
 </mymodel:PetStore>
</soap:Body>
</soap:Envelope>

Figure 11. Reply message to state request

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 7�

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

assumed to understand the semantics of the ele-
ments used for addressing. The only additional
assumption is that the invoker needs to know
which elements of the model can be used for
addressing.

So, in this scenario, the cost of making ad-
dressing information transparent to the invoker
is low. The main benefit of doing so is that with
this information in hand, the invoker does not
need to first retrieve an EPR for the resource.
It has, without the need for such an EPR, all
the information needed to create a complete
message, thus saving the need to send a query
to a registry (which requires finding a registry
in the first place). Note that this is only a sav-
ing if the invoker already knows the address
of the endpoint and if it doesn’t need access to
metadata potentially contained in the EPR. As a
result, this is not useful in a federated scenario,
where the address to which the message is sent
varies. In addition, a provider might optimize
its dispatching mechanism by choosing specific
ways to build the EPR. If the invoker is allowed
to use model elements to address the resource,
it effectively prevents the resource manage-
ability provider from being able to optimize its
dispatching mechanism. Another limitation is
that the invoker might not be the same as the
recipient of the response and in this case the
invoker might not be expected to understand
the resource model.

evaluatIon
In this section we evaluate our solution by
presenting our experience in developing the
solution and evaluating the scalability of our
prototype.

experience in global Service on
planetlab
We have built our prototype on PlanetLab to
manage several instances of JPetStore ser-
vices deployed globally. Scale, complexity,
and dynamism of the PlanetLab environment
resembles the systems of future. PlanetLab is
an evolving research testbed, and so are the
next generation distributed services. Because
we based our design on standard solutions for

the various aspects of the system, we were able
to build our prototype in less than two weeks.
Our experiments consisted of deploying the
JPetStore application on 50–100 nodes. On
each node, the JPetStore was customized based
on its geographic location. This customization
required initializing each JPetStore database
with its respective products. The entire deploy-
ment process was visualized with a tool that
showed dots on the screen as the deployment
completed or failed. During our experiments
with this prototype, we note the following
interesting events that took place:

• Dynamism: PlanetLab nodes constantly
went up and down. Our initial list of nodes
to be deployed during the experiment had
100 nodes. However, a large number of
those nodes went down during the course
of the experiment, and as a result, our
number of nodes shrank from 100 to 36,
then to 22 and then to 12. In less than 36
hours, our setup was reduced to one tenth
of its original size.

• Dependencies: Just before starting one of
the runs of our experiment, the configura-
tion of the eventing infrastructure was
modified. This change was not formally
captured by our system, and as a result,
the configuration changes made to it were
not propagated to our management services
and the experiment broke unexpectedly.

• Varying load: The PlanetLab network
and nodes were highly loaded leading to
unpredictable service response times. Our
management service is neither currently
handling adaptation to such changing con-
ditions, nor the underlying infrastructure
provides any sort of resource guarantees. As
a result, the time for the deployment events
to get propagated through the communica-
tion infrastructure to the visualization tool
was much poorer than expected, with some
events taking more than five minutes to
complete.

Thus, even though the deployment service
code was functioning correctly and executed

www.manaraa.com

80 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the deployment of JPetStore, the interesting
characteristics of the computing and service
environment caused a disruption in the ex-
periments. The lesson learned is that the man-
agement service needs an adaptability layer,
which can adapt to the PlanetLab environment
conditions. We also require a more structured
formal representation (i.e., model) of the overall
system, including characteristics such as ranges
of expected performance and response times,
to allow the management system to deal with
expected behavior, and to identify anomalous
behavior.

Quantitative evaluation
We conducted several additional experiments
to validate the scalability of our Web-services–
based JPetStore deployment. We conducted a
scale experiment for deploying JPetStore on up
to 105 PlanetLab nodes (see Figure 12). Nodes
were chosen at random from around the world.
The infrastructure on each node for our deploy-
ment service included Apache Tomcat Web
Server, Apache Axis Web Service Container
and our deployment Web service component.
We created a work flow for deploying JPetStore
(see Figure 12). We then conducted a scale
experiment for the deployment and collected de-
ployment time. Our measurement infrastructure
consists of a process monitoring the start and

finish times of each JPetStore deployment. The
data is then analyzed to calculate the average
deployment time with increasing scale. As
seen in Figure 12, compared to a conventional
deployment service, the slope of our deploy-
ment service is much lesser resulting in the
average deployment time to increase slowly as
the number of nodes increases. For example, a
doubling of deployment nodes from 25 to 50
results in only 67% increase in deployment time,
tripling of nodes from 25 to 75 results in 120%
increase in deployment time, and quadrupling
the nodes from 25 to 100 results in only 195%
increase in deployment time. Although there is
potential for further improvement in scalability,
the current results look promising. Although we
would like to conduct scale experiments with
hundreds if not thousands of nodes, we expect
to see a similar pattern for the graph.

leSSonS learned
We have learned the following lessons while
developing our approach to scalable manage-
ment:

• Planetary scale requires careful interac-
tion between applications, service oriented
architectures, and the management stack.
At the scale of millions of nodes, transpar-
ently extending architectures designed for

Figure 12. Scaling Web services deployment

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 81

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

small scale will not work. Our preliminary
experience indicates that such applications
must be designed with planetary scale in
mind. Rather than transparently hiding scal-
ability, in many cases it must be exposed,
by explicitly designing for federation and
distribution where needed.

• There exist new and different challenges
for scalable management with respect to
reliability and availability. Because of the
complexity of services, the dependency
matching and redeployment of services
becomes a critical part of the system.
Consequently, separating it from the de-
ployment system (and thus decoupling it
from the health of the deployment system)
is essential even if it introduces additional
problems in maintaining this additional
state.

• Models are only as good as what we want to
do with them. We are relying on the use of
models. However, distributed models also
pose new challenges for maintaining their
consistent state across distributed service
deployments. Therefore, the models are not
contributing anything in their own right,
the key benefit is in the use of models in a
manner that serves the given purpose best.
This usually means making decision based
on incomplete knowledge of the system.

• Transparency of the WSDM interfaces.
We have used scalable eventing for com-
munication. WSDM was designed with
point-to-point management, whereas the
eventing was designed for one-to-many
communication. WSDM interfaces ac-
commodated for it without any changes
to existing design and implementation.

•	 Move	 the	BPEL	workflow	 to	 target	ma-
chines. In our current implementation,
the deployment workflow specified in
the BPEL language is processed by a cen-
tralized BPEL workflow engine hosted
at the deployment server. Such a design
enables processing of cross-node depen-
dencies at a single workflow engine. How-
ever, such a centralized orchestration has
the limitations of scale. There is a need to

partition and distribute the BPEL workflow
description to workflow engines on the tar-
get machines. Challenges exist to achieve
decentralization, such as determining the
partition boundaries, and co-ordination
among the distributed workflow engines.

related Work
The related work falls into categories of deploy-
ment, model-based automation, and workflows.
In the area of deployment, several tools exist.
The Deployme system for package manage-
ment and deployment supports creation of the
package, distribution, installation, and delet-
ing old unused packages from remote hosts
(Oppenheim & McCormick, 2000). Magee et
al. describe CONIC, a language specifically
designed for system description, construction,
and evolution (Magee, Kramer, & Sloman,
1989). Cfengine provides an autonomous agent
and a middle- to high-level policy language for
building expert systems that administrate and
configure large computer systems (Burgess,
1995). A number of other tools are surveyed in
Anderson, Goldsack, & Paterson (2003).

Existing management solutions similarly
address functionalities in other areas of our in-
terest; for example, adaptation to failures and to
performance violations; HP OpenView (www.
managementsoftware.hp.com); IBM Tivoli
(www.tivoli.com); Computer Associates Uni-
center (http://www3.ca.com/solutions/solution.
asp?id=315). The effectiveness of these tradi-
tional solutions in large distributed systems is
significantly reduced by a number of properties
of these solutions. These are centralized control,
tight coupling, nonadaptivity, semiautomation.
Furthermore, these solutions do not adequately
address the needs and characteristics of large-
scale distributed services.

We base our work on standards evolving
in SOA. SOA represents a tie between various
areas, such as Grid computing, autonomic com-
puting, and enterprise computing, by enabling
underlying mechanisms for implementing poli-
cies and controls for these different domains. A
number of projects use workflows for orchestrat-
ing tasks in large scale dynamic environments,

www.manaraa.com

82 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

such as Krammer, Bolcer, and Taylor (1998) and
Vidal, Buhler, and Stahl (2004). Our work has a
lot of similarities with all above areas, however,
our primary focus is on very large scale, distrib-
uted services. Such services could be running
on, for example, geographically distributed data
centers. Managing these services require loose
coupling of the management stack, decentraliza-
tion, and dealing with incomplete knowledge.
Our management system leverages scalable
technologies; for example, publish-subscribe,
decentralized agents and control, and extends
them further to the next level of very large
scale global services. We provide solutions for
deployment, health, and adaptation for services
lifecycle management. Furthermore, we provide
higher level abstractions for service and system
descriptions through languages and models,
which aid in formally capturing the complex
needs of emerging services.

SuMMary and future
Work
In this article we have described an approach
for managing planetary-scale services. Our
approach is based on the use of models and
standards. We have demonstrated a use case
and then presented our solution to it, followed
by an initial evaluation. We claim that adopting
this approach will enable easier management
of global services and reduce development and
adoption barriers. In summary, it will reduce
the total cost of ownership of large computer
systems running global scale services.

Areas of future work include extensions
to the proposed management services in terms
of functionality and scalability. In particular,
the deployment service can be enhanced to
handle failures and exceptions during orches-
tration process, the federated models can be
integrated with adaptation services, and the
security framework can be extended to include
accountability. Further improvements to scal-
ability can be achieved through decentraliza-
tion (e.g., using distributed workflows) and
loose coupling (e.g., using Web services over
publish-subscribe eventing).

aCknoWledgMent
Parts of this work were conducted in the
broader context of the Scalable Manage-
ment project, with Robert Adams and Paul
Brett.

referenCeS
Adams, R., Brett, P., Iyer, S., Milojicic, D., Rafaeli,

S., & Talwar, V. (2005). Scalable manage-
ment—Technologies for management of large-
scale, distributed systems. In Proceedings of
the International Conference on Autonomic
Computing (ICAC), Seattle, WA.

Anderson, P., Goldsack, P., & Paterson, J. (2003).
SmartFrog meets LCFG: Autonomous re-
configuration with central policy control. In
Proceedings of the 17th Large Installation
System Administration Conference (LISA),
San Diego, CA.

Brett, P., Knauerhase, R., Bowman, M., Adams, R.,
Nataraj, A., Sedayao, J., et al. (2004). A shared
global event propagation system to enable next
generation distributed services. In Proceedings
of the First Workshop on Real, Large Distributed
Systems (WORLDS), San Francisco, CA.

Burgess, M. (1995). A site configuration engine.
USENIX Computing Systems, 8(3).

Foster, I., Kesselman, C., Nick, J., & Tuecke, S.
(2002). The physiology of the grid: An open
grid services architecture for distributed systems
integration. Open Grid Service Infrastructure
WG, Global Grid Forum.

Gilat, D., Landau, A., & Sela, A. (2004). Autonomic
self-optimization according to business objec-
tives. Proceedings of the International Confer-
ence on Autonomic Computing (ICAC), New
York, NY.

Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G.,
Murray, P., & Toft, P. (2003). SmartFrog: Con-
figuration and automatic ignition of distributed
applications. In Proceedings of the HP Open-
View University Association Conference.

Housley, R., Ford, W., Polk, W., & Solo, D. (1999),
Internet X.509 public key infrastructure certifi-
cate and CRL profile. RFC 2459.

www.manaraa.com

 International Journal of Web Services Research, 4(3), �5-84, July-September 2007 83

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Huhns, M. N., & Singh, M. P. (2005). Service-oriented
computing: Key concepts and principles. IEEE
Internet Computing, 9(1), 75-81.

Kandlur, D., & Killela, J. (Guest eds.). (2004). Utility
computing. IBM Systems Journal, 43(1).

Krammer., P., Bolcer, G. A., Taylor, R. N., & Hitomi,
A. S. (1998). Supporting distributed workflow
using HTTP. In Proceedings of the Fifth Inter-
national Conference on the Software Process,
Lisle, IL.

Magee, J., Kramer. J., & Sloman, M. (1989).
Constructing distributed systems in conic.
IEEE Transactions on Software Engineering,
15(6), 663–675.

Oppenheim, K., & MCormick, P. (2000). Deployme:
Tellme’s package management and deployment
system. In Proceedings of the Usenix 14th Large
Installation System Administration Conference
(LISA), New Orleans, LA.

Peterson, L., Anderson, T., Culler, D., & Roscoe, T.
(2002). A blueprint for introducing disruptive
technology. In Proceedings of ACM HotNets-I
Workshop, Princeton, NJ.

Rafaeli, S., & Hutchison, D. (2003), A survey of key
management for secure group communication,
ACM Computer Surveys, 35(3), 309-329.

Talwar, V., Milojicic, D., Wu, Q., Pu, C., Yan, W., &
Jung, G. (2005). Approaches for service deploy-
ment. IEEE Internet Computing, 9(2), 70-80.

Wang, Y. M., Verbowski, C., Dunagan, Y., Chen,
Y., Helen J. Wang, et al. (2003). STRIDER:
A black-box, state-based approach to change
and configuration management and support.
In Proceedings of the 17th Large Installation
System Administration Conference (LISA),
San Diego, CA.

Vidal, J. M., Buhler, P., & Stahl, C. (2004). Multia-
gent systems with workflows. IEEE Internet
Computing, 8(1), 76–82

Wilkes, J., Mogul, J., & Suermondt, J. (2004). Utili-
fication. In Proceedings of the ACM SIGOPS
European Workshop, Leuven, Belgium.

endnote
1 Planetlab (Peterson et al., 2002) is a research

testbed consisting of nodes spread all over the
globe. All of the nodes run a common software
package that includes a Linux-based operating
system and support for distributed virtualiza-
tion.

William	Vambenepe	is	an	HP	Distinguished	Technologist	in	the	OpenView	Office	of	the	CTO	where	he	is	
one of the architects of the technical strategy for HP OpenView. In addition to driving technical alignment
with partners and key customers, he oversees the standards strategy for OpenView.

Vanish Talwar is a researcher in the Enterprise Systems and Software Lab at Hewlett-Packard Laboratories.
His technical interests include distributed systems, operating systems, and computer networks, with a focus
on management technologies. He received his MS and PhD degrees in computer science from the University
of Illinois at Urbana Champaign (UIUC) in 2001 and 2006 respectively. He is the recipient of the David J.
Kuck Best Masters Thesis award in the Department of Computer Science, UIUC, and is an elected member
of Phi Kappa Phi and Sigma Xi. He is also a member of the ACM, IEEE, and USENIX.

Sandro Rafaeli is a senior software engineer and researcher for HP Brazil. He has obtained his PhD in
Computer Science at the University of Lancaster, England. Before joining HP, he has participated in several
research projects in the area of distributed systems funded by the European Community.

Bryan	Murray	is	a	member	of	the	Architecture	team	in	HP's	Advanced	Technology	Office	and	interacts	
with architects and developers throughout HP's OpenView Division. Bryan represents HP in several OASIS
technical	committees	and	DMTF	working	groups.	Bryan	has	co-authored	specifications	used	as	a	basis	for	
the	specifications	published	by	these	groups	and	has	been	editor	of	some	of	the	specifications.

www.manaraa.com

84 International Journal of Web Services Research, 4(3), �5-84, July-September 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Dejan Milojicic is a senior researcher and a project manager at HP Labs. He has worked in the area
of operating systems and distributed systems for more than 20 years. He has been the program chair of
the	IEEE	Agent	Systems	and	Applications	Symposium	(ASA/MA'99)	and	of	the	first	ACM/IEEE/USENIX	
Workshop on Industrial Experiences with System Software (WIESS'2000). Dr. Milojicic published in many
journals and at various events. He is currently on the editorial board of IEEE Distributed Systems Online.
He has been engaged in various standardization bodies and helped standardize OMG MASIF and more
recently	works	on	standardizing	SmartFrog	configuration	framework.	He	is	a	member	of	the	ACM,	IEEE,	
and USENIX. He received his BSc and MSc from University of Belgrade and his PhD from University of
Kaiserslautern.

Subu Iyer is a systems software engineer and researcher at HP Labs, Palo Alto. He joined DEC Network
Systems Lab in 1997 where he worked on collecting and analyzing performance data from a large cluster
of machines on DEC's Palo Alto Research Gateway. Over the years, Subu has worked on projects in the
areas of distributed computing, performance monitoring and telepresence. His current work is on scalable
adaptive performance monitoring.

Keith I. Farkas is a member of the VirtualCenter R&D team at VMware. His research interests include
manageability of distributed applications, distributed resource management, mobile computing and appli-
cations,	microprocessor	design,	and	power-	and	energy-	efficient	solutions	for	pocket	and	server	computer	
systems. He is on the editorial board for IEEE Pervasive Computing Magazine. He received his PhD from
the University of Toronto. He is a member of the IEEE and the ACM.

Martin Arlitt is a researcher in the Enterprise Software and Systems Laboratory at HP Labs.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

